

硬X線光電子分光(HAXPES)における 基礎データの整備に向けた取組

安野 聡1、池野 成裕2.1、陰地 宏2.3、渡辺 義夫2、廣沢 一郎1

¹高輝度光科学研究センター、²あいちシンクロトロン光センター、³名古屋大学

†現所属:大林組

目次

- ■光ビームプラットフォーム
- ■光電子分光
- ■硬X線光電子分光法の特徴
- ■硬X線光電子分光法の課題と取組
- ■光電子の検出深さ(有効減衰長)
- ■定量分析のための相対感度係数
- ■まとめ

放射光施設

AichiSR & SPring-8

愛知県瀬戸市 2013年 供用開始 周長:72 m 電子エネルギー:1.2 GeV

SPring-8

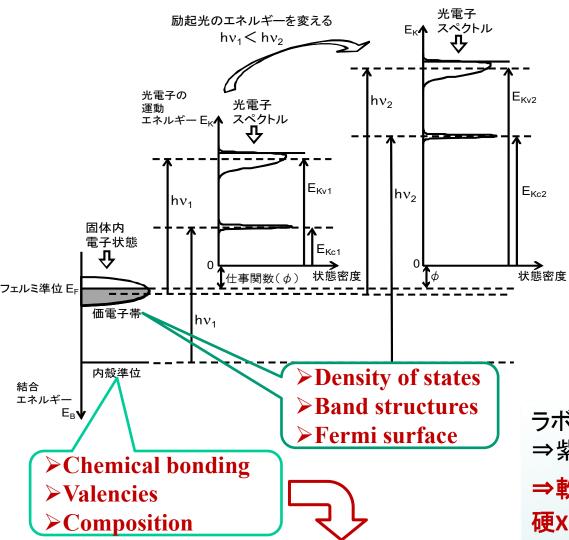
兵庫県佐用町播磨科学公園都市 1997年 供用開始

周長:1436 m

電子エネルギー:8 GeV

物質・材料科学、生命科学、宇宙・惑星科学、考古学、科学鑑定、産業応用など幅広い分野で利用

結合



光電子分光(PES)

(PhotoEmission Spectroscopy)

元素の同定、状態分析、定量分析など

励起X線 hv

冒子分光器

試 料

 $h_V = E_R + E_K + \phi$

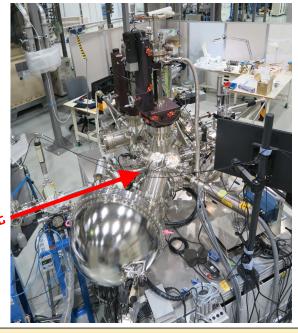
hv: 励起X線のエネルギー

Eg: 結合エネルギー

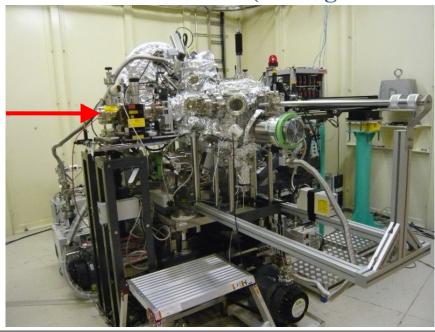
E_K: 光電子の運動エネルギー

♦:仕事関数

- ラボ系光電子分光(PES):励起光源
- ⇒紫外光~軟X線(数eV~1.5 keV)
- ⇒軟X線→Tender X線(1~4 keV)
- 硬X線光電子分光(<u>HA</u>rd <u>X</u>-ray <u>PES</u>; HAXPES)
- ⇒硬X線(数 keV~十数 keV)



X線光電子分光装置


SR光

SPECS PHOIBOS (Aichi SR BL6N1)

Scienta R4000-10keV (SPring-8 BL46XU)

- Si double crystal monochromator
- Horizontal/vertical focusing mirror
- Analyzer: PHOIBOS 150CCD
- Slit size: 7 mm × 25 mm curved
- Temperature: RT
- Pass energy: 20 eV
- Incident angle: 55°
- •Take off angle: 90°
- hv=3 keV(利用エネルギー)

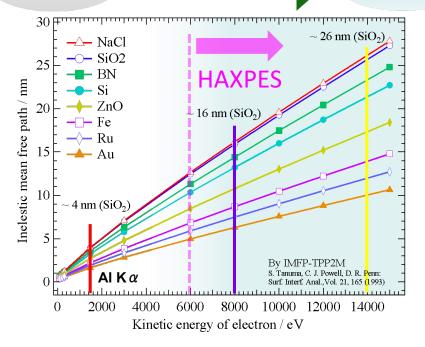
- •Si double crystal and Si channel cut monochromator
- Analyzer: R4000-10keV
- •Slit size: 0.5 mm × 25 mm curved
- Temperature: RT
- Pass energy: 200 eV
- •Incident angle: 10°
- •Take off angle: 80°
- ·hv=6, 8, 10 keV(利用エネルギー)

HAXPESの特徴

ラボに比べ、X線の励起エネルギー⇒大 (6~14 keV)

光電子の運動エネルギー⇒大

$$(:: E_k = h\nu - E_B - \Phi_s)$$

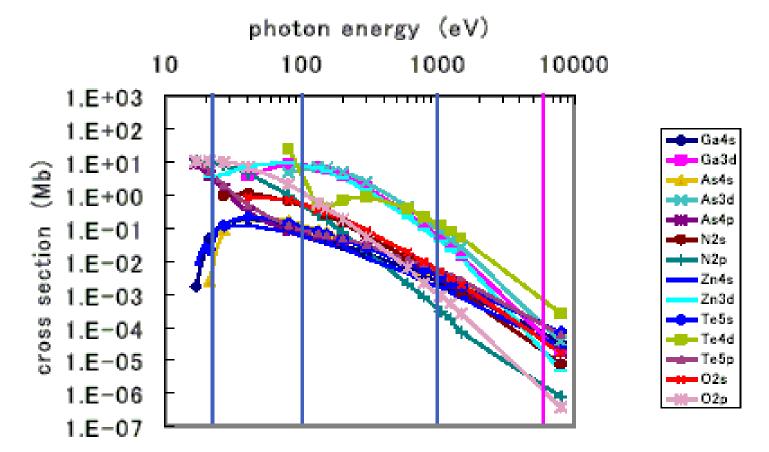

試料内における 光電子の非弾性散乱の影響⇒小 非弾性平均自由行程(IMIFP)⇒大

Large Probing depth

HAXPES

検出深度大(ラボ系の数倍) → 試料深部や埋もれた界面を非破壊で分析できる

⇒バルク敏感(表面鈍感)

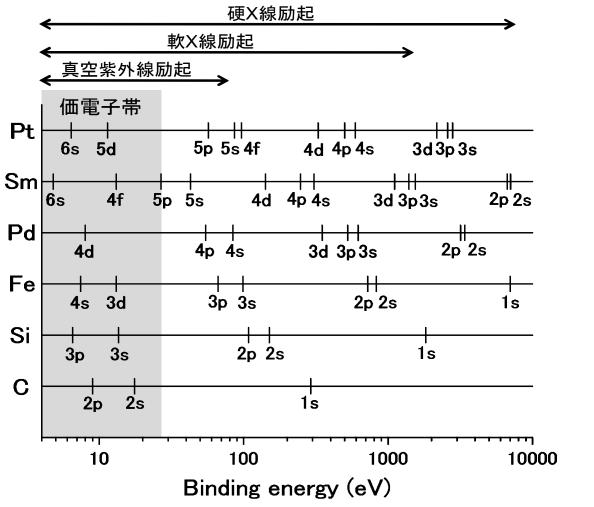


光イオン化断面積

X線エネルギーが高い、特に硬X線

光電子の発生が少ない

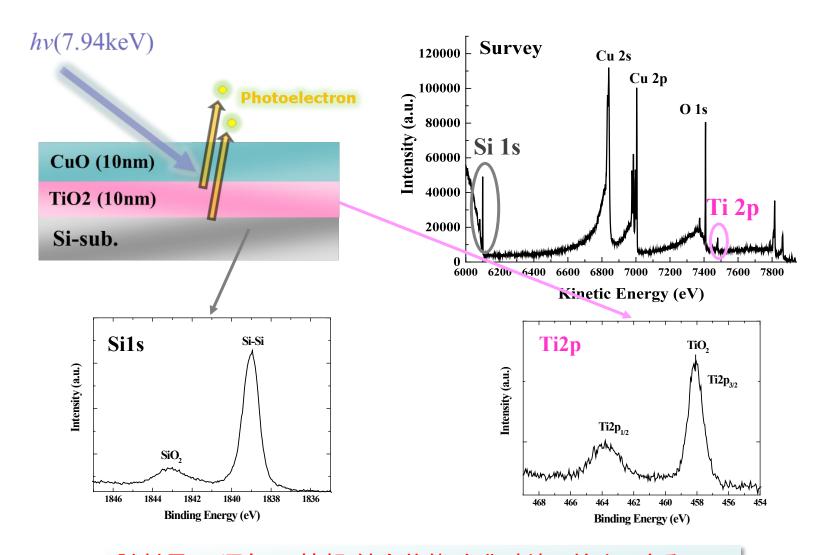
高輝度光源で克服

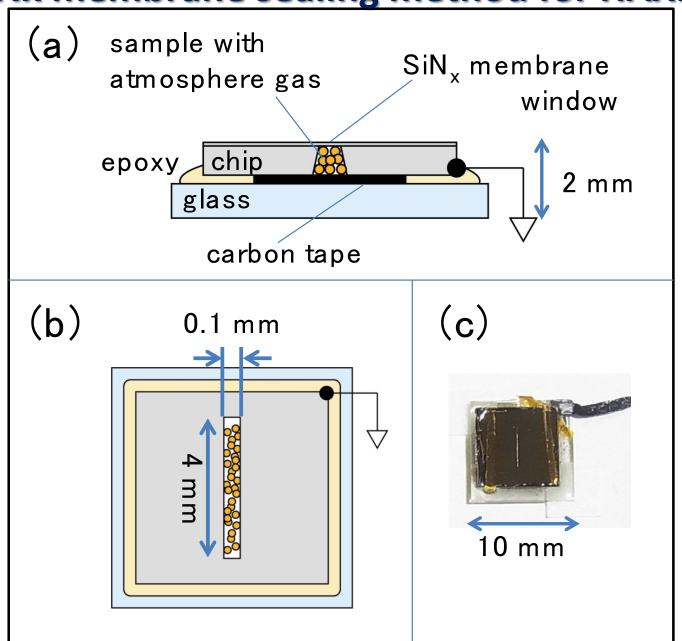


主な元素の電子エネルギー準位と励起光がカバーする領域

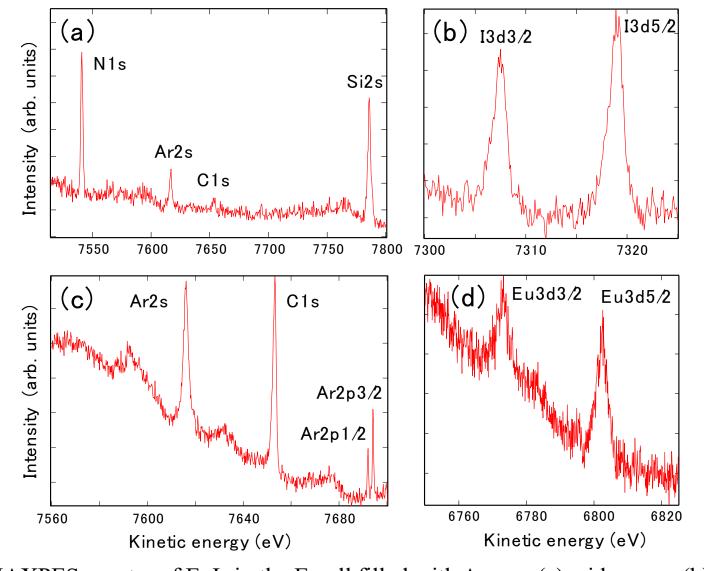
○ 通常のラボXPSに比べて測定できるピークが多い

⇒ ピークの干渉が少ない、解析の容易なs軌道のピークが使える





HAXPES測定例

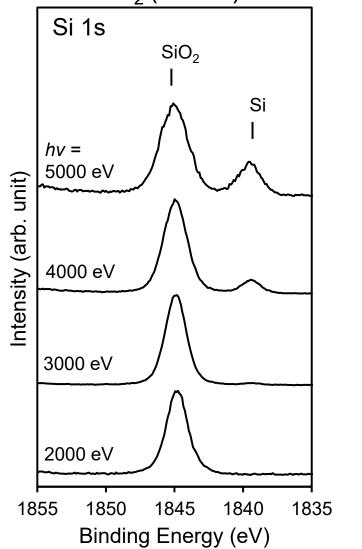


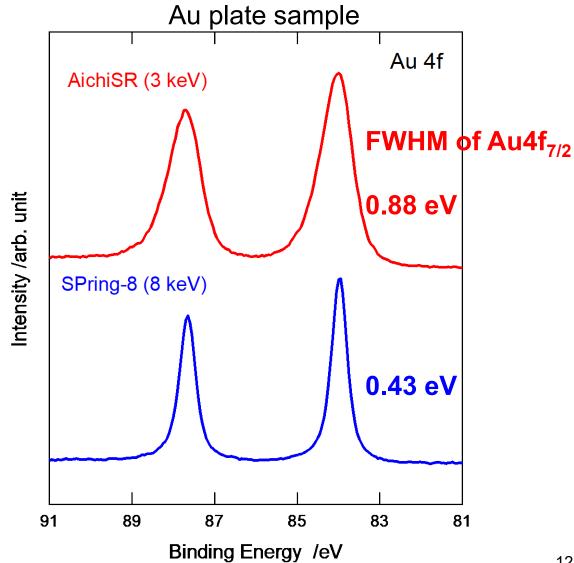
試料界面(深部)の情報(結合状態)を非破壊で検出できる。

SiNx membrane sealing method for HAXPES

E. Tsunemi, Y. Watanabe et al., JAP **117** pp.234902-1 – 234905-6 (2015).

HAXPES spectra of EuI_2 in the E-cell filled with Ar gas; (a) wide range (b) peaks of I3d, (c) peaks of Ar2s, C1s, and Ar2p, and (d) peaks of Eu 3d. In (b), two peaks are I3 $d_{3/2}$: BE=631.4 eV and I3 $d_{5/2}$: BE=620.0 eV, while in (d) Eu3 $d_{3/2}$: BE=1165.7 eV and Eu3 $d_{5/2}$: BE=1136.3 eV.



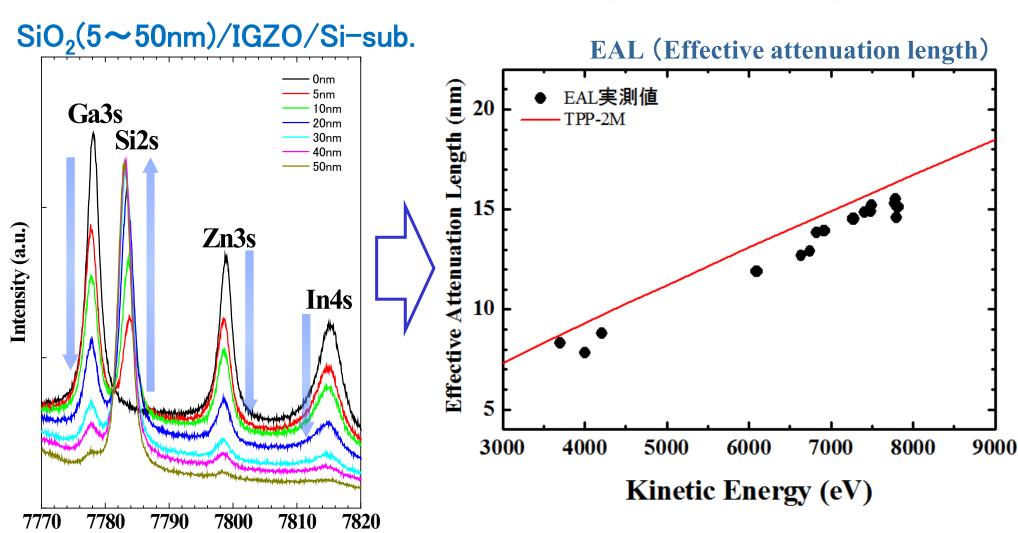


AichiSR(Tender X線)とSPring-8(硬X線)

AichiSR: SiO₂ (10 nm) on Si sub.

HAXPESの課題と取組

- > チャージアップ対策
- ▶ 基礎的なデータが少ない(特に深い準位)
- > 光電子の検出深さ(有効減衰長)
- 定量分析のためのデータが無い(相対感度係数)
- ➤ Recoil効果



Kinetic Energy (eV)

光電子の検出深さ(有効減衰長)

Wagner's RSF rule

Number of photoelectrons detected per second

$$I = nFTDA\Delta\Omega(d\sigma/d\Omega)\lambda,$$

$$\frac{n_a}{n_b} = \frac{I_a/T_a D_a A_a (d\sigma/d\Omega)_a \lambda_a}{I_b/T_b D_b A_b (d\sigma/d\Omega)_b \lambda_b},$$

$$\Box \Box C S = TDA(d\sigma/d\Omega)\lambda,$$

Sensitivity factor

$$\frac{n_a}{n_b} = \frac{I_a / S_a}{I_b / S_b}$$
 $\frac{I_a}{I_b} = \frac{n_a S_a}{n_b S_b}$

I:光電子強度(数/sec)

 $n: 原子密度(atoms/cm^3)$

F: X線光子のフラックス数(光子数/m² sec)

 $d\sigma/d\Omega$:微分光イオン化断面積(m²)

A: 光電子が発生する試料上の面積(m²)

T:透過関数

D:検出効率

λ:平均自由行程(m)

Element a, b

$$\frac{n_a}{n_b} = \frac{I_a / S_a}{I_b / S_b} \qquad \frac{I_a}{I_b} = \frac{n_a S_a}{n_b S_b} \qquad \frac{S_a}{S_b} = \frac{T_a D_a A_a (d\sigma / d\Omega)_a \lambda_a}{T_b D_b A_b (d\sigma / d\Omega)_b \lambda_b}$$

相対感度係数 (S_a/S_b) は1つの物質 中の異なる2つの元素(元素a,b)の 光電子強度(I_{or} I_{h})の比から定義でき る.

Compound A Compound B

$$\boxed{\frac{\sigma_a^{\rm A} \lambda_a^{\rm A}}{\sigma_b^{\rm A} \lambda_b^{\rm A}}} \cong \boxed{\frac{\sigma_a^{\rm B} \lambda_a^{\rm B}}{\sigma_b^{\rm B} \lambda_b^{\rm B}}} \cong const.$$

2つの元素の強度比は物質に大きく 依存しない

$$S_a = \frac{I_a/n_a}{I_{O1s}/n_{O1s}}$$
 O1s is the standard core level. $(S_{OIs}=1)$

計算値

Differential photoionization cross section for linearly polarized photons

$$d\sigma/d\Omega = \frac{\sigma}{4\pi} \left[\left(1 + \frac{\beta}{2} \left(3\cos^2\theta - 1 \right) + \left(\delta + \gamma\cos^2\theta \right) \sin\theta\cos\phi \right) \right],$$

Theoretical RSF

$$\frac{S}{S_{O1s}} = \frac{(d\sigma/d\Omega)\lambda}{(d\sigma/d\Omega)_{O1s}\lambda_{O1s}} \left(\frac{E_{kin}}{E_{kinO1s}}\right)^{-1}$$
 D:検出効率 $A: 光電子が発生する試料上の面積(m^2)$ 2 calculated by IMFP TPP-2M

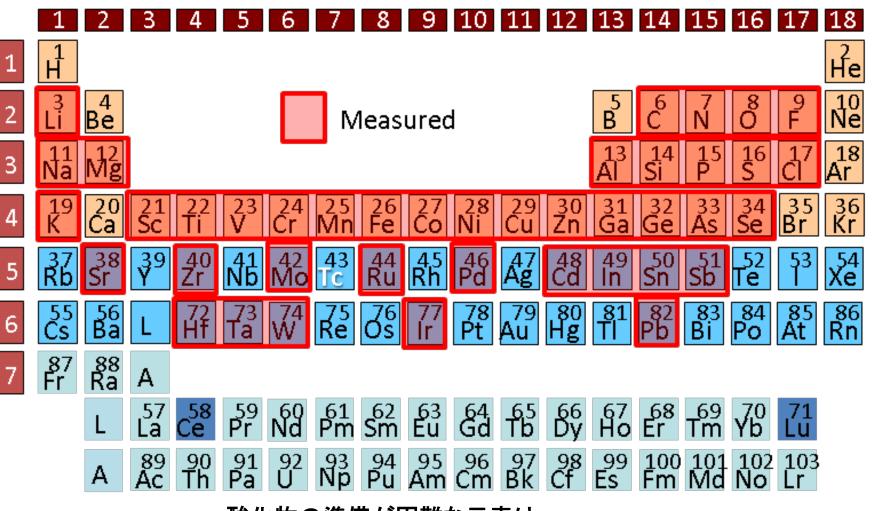
*TDA(Spectrometer function) varies with E-1

T:透過関数

-λ calculated by IMFP TPP-2M

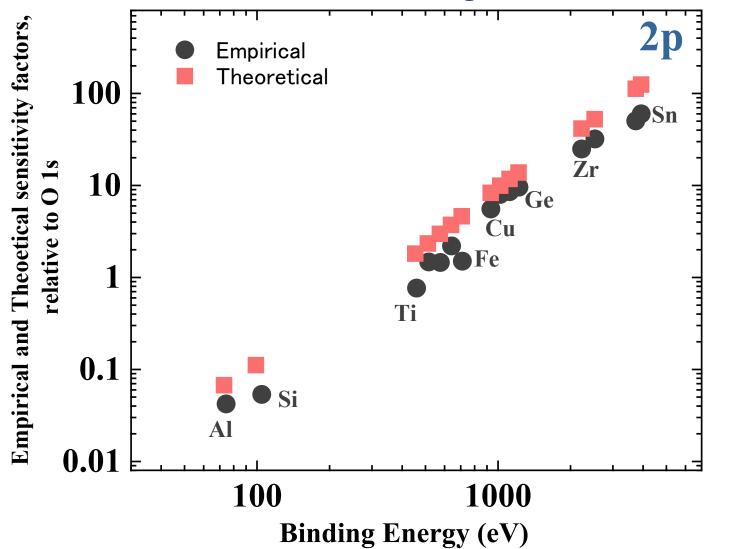
References

- -J. H. Scofield, Theoretical Photoionization Cross Sections from 1 to 1500 KeV Lawrence Livermore Lab. Rept. 1973, UCRL-51326.
- •M. B. Trzhaskovskaya, V. I. Nefedov and V. G. Yarzhemsky, Atomic Data and Nuclear Data Tables 77, 97-159 (2001)
- -S.Tanuma et al, Surf. Interf. Anal., 43, 689 (2012)



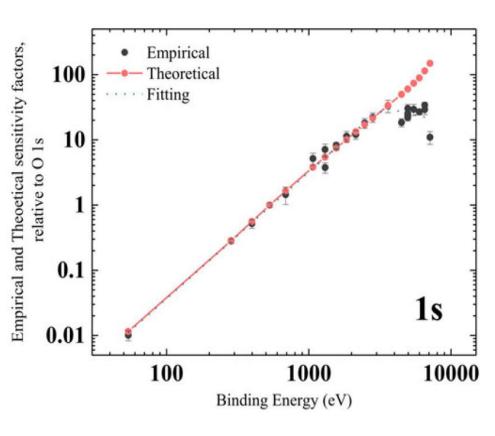
Measurements for Standard samples for RSFs

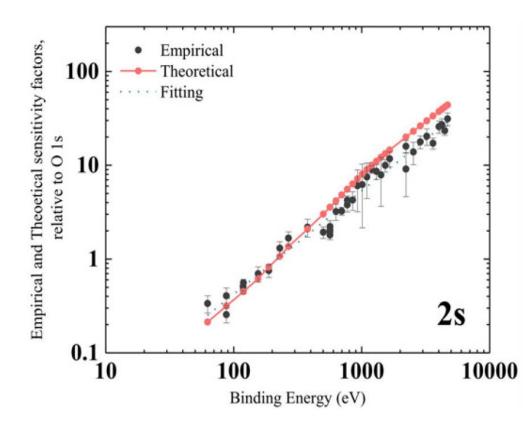
酸化物の準備が困難な元素は、 LiF, SiC, GaN, AIF₃, NaCl, GaP, ZnS, KCl, GaAs, ZnSe, InSbなどを使用



実験値と計算値の比較(SPring-8 BL46XU @8 keV)

S. Yasuno et al., Surface and Interface Analysis, 50, 1191(2018).





実験値と計算値の比較(SPring-8 BL46XU @8 keV)

PHOTON BEAM
PLATFORM

TABLE 1 Experimentally based relative sensitivity factors (relative to O1s = 1)

Li 0.0	1					$3d_{5/2}$
	_		Cu	5.9	3.2	
C 0.3	0		Zn	6.5	3.8	
N 0.5	7		Ga	7.1	4.5	0.038
O 1.0			Ge	7.8	5.3	
F 1.6			As	8.5	6.2	0.080
Na 3.9	0.25	0.005	Se	9.3	7.2	0.11
Mg 5.7	0.36	0.012	Sr	12.8	12.6	0.31
Al 8.1	0.51	0.027	Zr	14.8	16.3	0.44
Si 11.	1 0.68	0.052	Мо	17.0	20.7	0.58
P 14.	9 0.85	0.078	Ru	19.3	25.8	0.72
S 19.	7 1.1	0.12	Pd	21.9	31.9	0.88
Cl 25.	4 1.2	0.17	Cd	24.6	39.1	2.3
K 30.	1 1.8	0.36	In	26.1	43.2	2.7
Sc 26.	9 2.5	0.66	Sn	27.7	47.7	3.0
Ti 25.	6 2.8	0.84	Sb	29.3	52.4	3.4
V 24.	4 3.2	1.0	Hf			18.1
Cr 23.	3 3.6	1.3	Та			21.1
Mn 22.	3 4.0	1.6	W			25.4
Fe 21.	3 4.5	1.9	Ir			42.7
Co	4.9	2.3	Pb			100.2
Ni	5.4	2.7				

まとめと今後の予定

- ➤ Tender X線を含めたHAXPESの基礎データの整備を実施している。
- ▶ 相対感度係数や有効減衰長を中心とした活動を進め、相対感度 係数は実測値と計算値に一定の相関が認められる。
- ➤ 分析深さ(光電子の有効減衰長)は引き続き、実測値とTPP-2M (IMFP)との比較データを増やす。
- ▶ 光電子スペクトルのデータベース化を進める。