SAXS標準化測定実験の実施状況

杉山信之¹、山元博子¹、佐藤眞直²、大坂恵一²、加藤裕和³、杉本 泰伸⁴、 上原 康¹、渡辺義夫¹、廣沢一郎²

¹あいちシンクロトロン光センター、²(公財)高輝度光科学研究センター、 ³あいち産業科学技術総合センター、⁴名古屋大学

経緯・目的

光ビームプラットフォームによる施設連携の一環で、さまざまな 計測手法について施設横断測定が行われている。 昨年度、小角散乱測定についても同様に施設横断測定を行った。

施設横断測定の目的

◆ 参加ビームラインで小角散乱測定及び解析が同様に行えることを確認する

◆ 各ビームラインの性能を定量化する

◆ ビームラインの横断利用をさらに促進する

・実験データの互換性を図る

・ユーザーサービスの向上

・ビームラインの横断利用を促進する

2019.9.4 放射光産業利用における測定標準化ワークショップ

参加BeamLine

AichiSR BL8S3 広角・小角X線散乱

BL選定の理由 産業利用に強いBLで施設横断測定を行い、ユーザーの利便性の向上を図るため

評価項目

1) 信号強度

• 光源の性能によるところが大きい

(強い光が必要なら大型放射光施設へ)

2) 測定波数範囲

- 一度に取れる範囲 -> 検出器面積に依存
- BLとして対応する範囲 -> カメラ長に依存
 (超小角が必要なら長いカメラ長が取れるBLへ)
- 3) 有効ダイナミックレンジ
- 4) 波数分解能

2019.9.4 放射光産業利用における測定標準化ワークショップ

試料及び測定手法

単分散Auコロイド溶液 Sigma-Aldrich製 1粒子あたりの 平均粒子径 粒子濃度 測定 溶媒体積半径 6.95×10⁻⁵ g/mL 163 nm 5 nm SAXS 6.05×10⁻⁵ g/mL 10 nm 342 nm SAXS 5.29×10⁻⁵ g/mL 715 nm SAXS 20 nm 4.89×10⁻⁵ g/mL 1100 nm SAXS 30 nm 3.88×10⁻⁵ g/mL 100 nm 3960 nm USAXS 1.54×10^{-4} g/mL 5010 nm 200 nm USAXS

測定手法

すべて球状

CV <10%

nm 30 nm

使用した溶液セル(30×15×5 mm)

光路長3 mm 窓材:人工マイカ(厚さ 20 µm)

N

施設	BL	実験条件	日時
SPring-8	BL19B2	USAXS X線エネルギー = 18 keV カメラ長 = 40840 mm カメラ長較正用試料:コラーゲン	<section-header></section-header>
		SAXS X線エネルギー = 18 keV カメラ長 = 3045 mm カメラ長較正用試料 : ベヘン酸銀 検出器 : PILATUS2M	
AichiSR	BL8S3	SAXS X線エネルギー = 13.5 keV カメラ長 = 4016 mm カメラ長較正用試料 : コラーゲン 検出器 : PILATUS100K	2018年11月16日

2019.9.4 放射光産業利用における測定標準化ワークショップ SPring-8 BL19B2 USAXS

X線エネルギー = 18 keV カメラ長 = 40840 mm (40. 840 m) 検出器 : PILATUS2M

SPring-8 BL19B2 SAXS

USAXSの約1/13

放射光産業利用における測定標準化ワークショップ

X線エネルギー = 18 keV カメラ長 = 3045 mm (3.045 m) 検出器 : PILATUS2M

1/729希釈までAuの信号を観測

あいちSR BL8S3

2019.9.4

X線エネルギー = 13.5 keV カメラ長 = 4016 mm 検出器 : PILATUS100K

1/243希釈までAuの信号を観測

放射光産業利用における測定標準化ワークショップ

2019.9.4 放射光産業利用における測定標準化ワークショップ

波数分解能の比較

検出強度の対数値の波数微分の比較

0.3 nm⁻¹ 付近の極大値と極小値の差 BL19B2 39.8 BL8S3 39.6

SAXS域での波数分解能は同じ

放射光産業利用における測定標準化ワークショップ

2019.9.4 モデルフィッティング

有効ダイナミックレンジ

BL19B2の方がバックグラウンドが低い BL8S3では装置の改良等でバックグラウンド低減を目指す

放射光産業利用における測定標準化ワークショップ

波数分解能

BL19B2とBL8S3 では、波数分解能に違いはない

入射X線エネルギーの違いによる散乱への影響について検討する 液体等の試料を測定するためのセル・窓材の検討をする